Revisiting a Nearest Neighbor Method for Shape Classification
نویسندگان
چکیده
منابع مشابه
Revisiting the Vector Space Model: Sparse Weighted Nearest-Neighbor Method for Extreme Multi-Label Classification
Machine learning has played an important role in information retrieval (IR) in recent times. In search engines, for example, query keywords are accepted and documents are returned in order of relevance to the given query; this can be cast as a multi-label ranking problem in machine learning. Generally, the number of candidate documents is extremely large (from several thousand to several millio...
متن کاملNearest Neighbor Classification
The nearest-neighbor method is perhaps the simplest of all algorithms for predicting the class of a test example. The training phase is trivial: simply store every training example, with its label. To make a prediction for a test example, first compute its distance to every training example. Then, keep the k closest training examples, where k ≥ 1 is a fixed integer. Look for the label that is m...
متن کاملUncertain Nearest Neighbor Classification
This work deals with the problem of classifying uncertain data. With this aim the Uncertain Nearest Neighbor (UNN) rule is here introduced, which represents the generalization of the deterministic nearest neighbor rule to the case in which uncertain objects are available. The UNN rule relies on the concept of nearest neighbor class, rather than on that of nearest neighbor object. The nearest ne...
متن کاملNearest-Neighbor Classification Rule
In this slecture, basic principles of implementing nearest neighbor rule will be covered. The error related to the nearest neighbor rule will be discussed in detail including convergence, error rate, and error bound. Since the nearest neighbor rule relies on metric function between patterns, the properties of metrics will be studied in detail. Example of different metrics will be introduced wit...
متن کاملNearest neighbor pattern classification
The case of n unity-variance random variables x1, XZ,. * *, x, governed by the joint probability density w(xl, xz, * * * x,) is considered, where the density depends on the (normalized) cross-covariances pii = E[(xi jzi)(xi li)]. It is shown that the condition holds for an “arbitrary” function f(xl, x2, * * * , x,) of n variables if and only if the underlying density w(xl, XZ, * * * , x,) is th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2020
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2020edp7074